越南晋磨锑矿床稀土元素地球化学 特征与成因探讨

季根源¹ 戴塔根² 姬祥永³ 尚 磊¹ 姜爱玲¹

(1. 国土资源实物地质资料中心,廊坊 065201;
2. 中南大学地球科学与信息物理学院,长沙 410083;
3. 华北地质勘查局综合普查大队,廊坊 065201)

摘要 对越南晋磨锑矿床赋矿围岩、矿化岩石和矿石的稀土元素地球化学特征研究表明,围岩的 SREE 明显高于矿化岩石和锑矿石,具有中度 Eu 负异常,矿石以明显的 Ce 负异常区别于围岩和矿化岩石,对比三者的稀土元素配分模式图,发现差异较大。类比锡矿山锑矿床、独山锑矿床成矿物质来源,结合矿区野外地质调查和稀土元素地球化学研究,认为晋磨锑矿床成矿物质与赋矿围岩无关,成矿物质可能来源于基底、幔源物质和隐伏岩体;成矿流体在运移过程中,由于物理化学环境的改变,辉锑矿在低压构造带或虚脱部位卸载,形成晋磨锑矿床。

关键词 稀土元素 地球化学 晋磨锑矿 越南 中图分类号: P595; P618. 66 文献标识码: A

越南东北部大地构造位于欧亚古大陆南缘,为 中国华南地块与印支地块的交接部位,处于太平洋 与特提斯带的结合部位,二者的界线就是巨大的走 滑大断裂—红河断裂带。法国地质学家 H. Fontaine 等(1978年)认为,以红河为界,以东的越南东 北部属于华南地块,以西的越南西南部属于印支半 岛构造体系^[1]。

晋磨锑矿床成因类型初步确定为构造控制的低 温热液充填型锑矿床,位于越南广宁省的东北部,距 中国广西边境约 22 km。晋磨锑矿床虽在越南境 内,但其大地构造位置仍处于中国华南褶皱带内,紧 邻我国传统意义上的华南锑矿带(图1),华南锑矿 带是我国最重要的锑矿带^[2]。

近年来,稀土元素在地质领域中的研究和应用 取得了很大的进步,稀土元素地球化学参数多被用 于判断成矿流体的来源和成矿的物理化学条件^[4]。 本文通过对围岩、矿化岩石、矿石的稀土元素地球化 学特征研究,探讨晋磨锑矿床的成矿物理化学条件

文章编号: 1674-7801(2015) 06-0793-07

及推测成矿物质来源,为该类型矿床的地质勘探、研 究提供参考,同时有利于丰富华南锑矿带及其周边 锑矿床的成矿理论。

1 地质背景

区域内出露的地层主要有奥陶系、志留系、三叠 系、侏罗系和第四系,地表多为第四系泥土覆盖。北 东东向断裂(灵山一藤县断裂)控制沉积作用明显, 断裂以北一般为下三叠统,断裂的东南侧多为侏罗 系、白垩系和第三纪盆地。在志留纪一早二叠世为 一长槽状深海盆地,沉积了大量泥质岩、复理石和含 锰硅质岩建造。区域内沿着灵山一藤县断裂带及其 两侧广泛分布着海西期至燕山期中酸性侵入岩,构 成北东向条带状花岗岩带。

矿区内地质条件较为简单,出露的主要地层有 奥陶系、志留系和侏罗系(图2)。构造以断裂为主, 主断裂 F₁ 走向近南北,倾向东,倾角 30°~50°左右, 两侧分布一些派生的北西向、北东向的次级小断裂。

[收稿日期]2015-03-16

793

[[]基金项目]中国地质调查局科研项目(编号:12120114080601)资助。

[[]第一作者简介]季根源,男,1987年生,硕士,助理工程师,从事地质矿产勘查及实物地质资料管理工作。

图 1 越南晋磨锑矿床位置示意图(据文献[3]) 1——级构造单元界线;2——级构造单元推测界线;3—次级构 造单元界线;4—华南锑矿带;5—锑矿床;6—国界

图 2 越南晋磨锑矿床矿区地质简图 1一第四系沉积物;2一侏罗系中统砂岩、角砾岩;3一志留系下统 变质杂砂岩、千枚岩;4一奥陶系上统千枚岩、板岩;5一锑矿体; 6一断裂及编号;7一不整合面

雁形、X 形节理很发育,应力作用复杂。区内劈 (片)理化带较发育,顺岩层呈波状起伏(扭曲)。矿 区内未见岩浆岩出露。

794

矿体受 F_1 大断裂及次级断裂控制 矿体规模总体一般 位于千枚岩、变质杂砂岩的断裂带中。依据 矿体的的规模和含矿性 ,分为两类矿体。主矿体 ,主 要由 F_1 含矿断裂破碎带组成 ,长约 500 m ,宽 0.5~ 2 m ,倾向近东 ,倾角为 30°~50° ,含矿性较好 ,规模 较大。矿体呈脉状、透镜状和扁豆状等 ,近南北向断 续延伸 ,与周围几个矿点形成一个近南北向展布的 矿带。矿体呈脉状 ,形态多样化 ,矿脉的分支汇聚、 尖灭再现等现象在矿带内普遍存在。次级矿体 ,主 要位于矿区内次级断裂(F_2 、 F_3 、 F_4 、 F_5)中 ,北西向或 北东向延伸。脉体长度一般小于4 m ,宽 0.3~0.5 m 局部可见零星的矿化现象 ,含矿性一般 ,规模较 小。脉体中石英含量较多 ,石英呈碎裂状 ,辉锑矿较 少 ,未见其他金属矿物。

2 岩(矿)石特征

2.1 围岩特征

矿区内赋矿地层简单,主要岩石类型以浅变质 的中细粒变质杂砂岩、变质石英杂砂岩为主,其次为 千枚岩、含炭质千枚岩。

变质杂砂岩类: 矿区内变质杂砂岩出露很广, 黑、灰黑、灰褐色,表面有弱丝绢光泽,常显清晰的微 细水平层理构造。变余砂状结构清晰,呈块状及弱 定向构造(图 3a),细粒、砂级以上的颗粒大多保留 有原来的碎屑特征。基质一般已变质结晶,多为绢 云母、细粒长英质和少量黑云母、白云母、绿泥石等 组成,岩石中更细的基质则结晶为针状鳞片状绢云 母、鳞片状绿泥石和微粒状石英(图 3b)。

千枚岩类:黑、灰黑色 表面有丝绢光泽,见千枚 状构造,粒状鳞片状变晶结构。主要为绢云母、石英 和少量绿泥石组成。部分千枚岩含少量炭质,为含 炭质绢云千枚岩,石英颗粒较多者则为含炭质石英 绢云千枚岩;碎裂石英条带和绢云母条带互层,定向 分布的绢云母组成千枚状构造或经动力变质呈皱纹 状构造,为石英绢云千枚岩(图 3c)。

矿区内围岩稳定、致密,对热液和气液的挥发、 流失起到抑制作用,对锑矿的稳固和储存有着积极 的作用。热液活动较为频繁,围岩蚀变现象较为单 一,主要顺层分布。蚀变普遍发育有硅化、黄铁矿 化、白铁矿化、高岭石化(褪色化)。其中硅化是矿 区中最常见的热液蚀变,与矿化关系密切,呈单脉、

2015 年

图 3 晋磨锑矿围岩和矿石的镜下特征 a一变质杂砂岩弱定向构造(+);b一变质杂砂岩中变余砂状结构(+);c一石英绢云千枚岩,千枚岩呈皱纹状构造(+);d一辉锑矿聚 片双晶 ₆光(+);e一后期黄铁矿交代溶蚀辉锑矿 ₆光(-);f一辉锑矿他形结构尖角状或多角状充填于石英中 ₆光(-);Qtz一石 英;Srt—绢云母;Bt—黑云母;Snt—辉锑矿;Py—黄铁矿

复脉和网脉形式充填、交代于破碎带、劈理中。

2.2 矿石特征

矿区矿石类型简单,主要可分为细脉浸染状辉 锑矿矿石、致密块状辉锑矿矿石和角砾状辉锑矿矿 石。矿石矿物组成较简单,金属矿物主要为辉锑矿, 含少量的黄铁矿和极少量的白铁矿、黄铜矿、闪锌矿 等。非金属矿物以石英为主,含少量方解石、长石、 炭质及泥质等。

常见的矿石结构有:中细粒自形—半自形粒状 795 结构、聚片双晶结构(图 3d)、交代溶蚀结构(图 3e)、填隙结构(图 3f)、共边结构。常见的矿石构造有:浸染状构造、块状构造、角砾状构造、脉状、网状构造、晶洞构造。矿床中辉锑矿晶形发育较好,显示出成矿流体在较为开放的空间中发生沉淀富集。

3 样品采集与分析方法

从矿体中心、矿化岩石、围岩依次选取了9个样 品进行稀土元素测试分析,根据样品类型和特征将 其分为3组:第一组(1-1-Gp08、1-2-Gp07、1-2-Gp05)是块状、脉状锑矿石,矿体的主要矿石类型, 质地较硬和石英紧密共生,石英和辉锑矿之间呈互 相穿插和包容关系;第二组(1-1-Gp015、1-1-Gp04、1-1-Gp05)是矿化岩石,主要由板岩、石英、 黄铁矿和辉锑矿组成,辉锑矿成细脉浸染状分布于 板岩中,黄铁矿呈星点状分布在板岩中或细脉穿插 于板岩、石英裂隙中,见红色铁染质穿插于石英裂隙 中;第三组(1-1-B12、1-1-B06、2-1-b03)是围岩, 千枚岩、变质石英杂砂岩。

野外采集的岩矿石样品经过手选、洗净、烘干、 描述和拍照后送至澳实分析检测(广州)有限公司 加工研碎 将岩矿石制成 200 目,重 300g 的测试样 品。样品在广州澳实矿物实验室进行分析测试,采 用 ME-MS81 熔融法电感耦合等离子体质谱仪(ICP -MS)测定稀土元素含量 稀土元素测试仪器为荷兰 PANALYTICAL,型号为 MAGIXFAST。除 1-1-Gp08、1-1-Gp07 中的 Eu 的含量,1-1-Gp08 中的 Tb 的含量,所测其他样品的稀土元素的含量均高于 检测下限,测试结果见表 1。

± 1			7는 7 66 1장 니		
衣Ι	首熔铣炉 床围石	、1/11七石石:	、切(白い「柿」	C兀系组队/	又特征阻

 $\omega_{\rm B} / 10^{-6}$

		矿体			矿化岩石			围岩	
样品号	1-1-Gp08	1-2-Gp07	1-2-Gp05	1-1-Gp15	1-1-Gp04	1-1-Gp05	1-1-B12	1-1-B06	2-1-b03
La	9.3	8.8	9.3	16.2	3.4	2.6	54.6	54.7	99
Ce	1.3	2.2	4.6	29.1	9.8	8.1	99.1	100. 5	173
Pr	0.12	0.21	0.48	3.73	1.55	1.33	11	10.65	18.2
Nd	0.4	0.8	1.5	13.4	6.9	6.2	36.8	35	58.5
Sm	0.09	0.14	0.31	3.61	3.42	2.76	6.8	7.33	11.75
Eu	<0.03	<0.03	0.04	0.82	1.1	0.86	1.3	1.49	2.41
Gd	0.17	0.2	0.3	5.16	9.12	6.83	6.13	6.49	10.9
Tb	<0.01	0.03	0.05	0.79	1.84	1.37	0.91	0.96	1.57
Dy	0.12	0.14	0.19	4.15	9.49	6.71	4.85	5.12	8.2
Ho	0.02	0.03	0.03	0.85	1.83	1.26	1.04	1.05	1.72
Er	0.05	0.07	0.11	2.08	3.99	2.91	3.01	3.04	4.95
Tm	0.02	0.01	0.01	0.26	0.44	0.33	0.43	0.43	0.65
Yb	0.05	0.08	0.11	1.73	2.41	1.87	2.74	2.66	4.13
Lu	0.01	0.01	0.02	0. 23	0.28	0.22	0.4	0.41	0.62
Y	0.7	1.3	1.2	25.3	53.9	36.3	31.3	33	50.5
ΣREE	11.65	12.72	17.05	82.11	55.57	43.35	229.11	229.83	395.60
ΣLREE	11.21	12.15	16. 23	66.86	26.17	21.85	209.6	209.67	362.86
ΣHREE	0.44	0.57	0.82	15.25	29.40	21.50	19.51	20.16	32.74
L/H	25.48	21.32	19.79	4.38	0.89	1.02	10.74	10.40	11.08
(La/Yb) $_{\scriptscriptstyle N}$	125.69	74.33	57.13	6.33	0.95	0.94	13.47	13.90	16.20
(La/Sm) $_{\scriptscriptstyle N}$	65.04	39.56	18.88	2.82	0.63	0.59	5.05	4.70	5.30
(Gd/Yb) $_{\scriptscriptstyle N}$	2.76	2.03	2.21	2.42	3.07	2.96	1.81	1.98	2.14
δEu	<0.74	<0.55	0.40	0.58	0.60	0.61	0.62	0.66	0.65
$\delta ext{Ce}$	0.29	0.38	0.51	0.88	1.00	1.02	0.95	0.98	0.95

注: L/H 为轻、重稀土元素含量的比值; $\delta Eu = Eu_N / (Sm_N \times Gd_N)^{1/2}$; $\delta Ce = Ce_N / (La_N \times Pr_N)^{1/2}$ (下标 N 表示元素相对球粒陨石标准化值)。

796

第6卷 第6期

4 稀土元素地球化学特征

晋磨锑矿床的围岩和矿石的稀土元素测试结果 见表1 稀土元素配分曲线见图 4。

(球粒陨石标准化数据值据文献[5])

根据表 1 可知围岩的稀土元素总量(229.11× 10⁻⁶~395.60×10⁻⁶)明显高于矿化岩石(43.35×10⁻⁶ ~82.11×10⁻⁶)和锑矿石(11.65×10⁻⁶~17.05× 10⁻⁶),LREE/HREE的值在 10.40~11.08 之间, (La/Yb)_N的值为 13.47~16.20,(La/Sm)_N值为 4.74~5.30,(Gd/Yb)_№值为1.81~2.14,∂Eu值为 0.62~0.65,∂Ce值为0.95~0.98,表现出轻重稀土 分馏强, 羟稀土相对富集、分馏较强,重稀土分馏较 低,Eu中一轻度负异常,Ce无明显异常,稀土配分 模式图右倾、较陡(图4a)。

矿化岩石的稀土元素总量明显偏低,LREE/ HREE的值在 0.89~4.38 之间,分布较均衡,(La/ Yb)_N的值为 0.94~6.33,(La/Sm)_N 值为 0.59~ 2.82 (Gd/Yb)_N 值为 2.42~3.07 β Eu 值为 0.58~ 0.61 β Ce 值为 0.88~1.02 ,表现出轻重稀土分馏不 明显或较轻, 轻稀土轻微富集、分馏较低, 重稀土分 馏较低, Eu 中度亏损, Ce 无异常特征,稀土配分模 式图基本较平缓, 有轻微波折(图 4b)。

锑矿石的稀土元素总量最低,LREE/HREE的 值很大,在19.79~25.48之间,(La/Yb), 的值为 57.13~125.69 (La/Sm), 值为18.88~65.04 (Gd/ Yb), 值为2.03~2.76 ,δEu平均值<0.56(1-1-Gp08、1-1-Gp07的Eu含量低于检测下限) δCe值 为0.29~0.51 表现出轻重稀土分馏十分强烈, 轻稀 土强烈富集、分馏程度高,重稀土分馏程度低, Eu 强负异常, Ce 负异常特征明显,稀土配分曲线右倾、 较陡,有轻微波折(图4c)。

5 讨论

长期以来 学者对国内已知的锑矿床研究颇多 , 尤其是华南锑矿带及其周边的矿床,其锑矿成因特 征各具代表性 关于锑金属成矿物质来源问题 学者 们给出的结论存在较大分歧。部分学者认为含 Sb 量较高的容矿地层及下部地层提供了成矿物质 ,另 有一些学者认为 Sb 来源于基底、地幔。例如湖南锡 矿山锑矿床 某些学者认为成矿物质来源于矿区前 泥盆系老地层[6-7],而彭建堂(2002)[8]指出锡矿山 锑矿床的成矿物质不可能来自赋矿地层 ,深部地幔 和元古宇基底对锡矿山的成矿作用影响很大;沈能 平等(2013)^[9]研究表明贵州独山巴年锑矿床锑元 素除来自赋矿围岩泥盆系外,基底地层也可能提供 了部分成矿物质;王津津等(2011)^[10]认为贵州晴隆 锑矿矿源层是与峨眉山玄武岩喷发有关的凝灰岩; 鲍振襄(1991)^[11]指出湘西沃溪钨锑金矿床成矿物 质来源于赋矿地层马低驿组。前人对华南锑矿带及 其周边典型锑矿床的成矿物质来源问题的研究 ,表 明锑矿床中成矿物质的来源问题还未达到统一的认 识,针对华南锑矿带及其周边的锑矿床成矿物质来

797

源还需要做进一步的系统研究。

在探讨成矿物质来源时 通常将不同地质体的 稀土特征与矿石的稀土特征进行对比 根据它们之 间的相似性来判断成矿物质的可能来源^[12]。本文 通过对晋磨锑矿床的围岩、矿化岩石、矿石的稀土元 素测试发现 矿区围岩的 ΣREE 含量较高 大于地壳 平均值 165.35×10^{-6[13]},围岩中稀土元素的迁出量 很小。锑矿石的轻稀土强烈富集、分馏程度高、重稀 土分馏程度低、Eu 中强度亏损、Ce 强烈亏损的稀土 元素配分模式图和围岩的轻稀土相对富集、分馏较 强、重稀土分馏较低、Eu 轻度亏损、Ce 无明显异常 的稀土元素配分模式图明显不同。矿区中 Ce 在围 岩、矿化岩石中无明显异常 在矿石中出现中强度负 异常 而 Ce 在酸性还原环境下一般以 Ce³⁺形式存在 于流体中,容易随 REE³⁺进入矿物晶格中^[14-16],可 得出该区矿体的 Ce 中强度负异常是由成矿流体原 始热液中 Ce 负异常造成的,与赋矿围岩无明显关 系。以上特征说明了矿区围岩对成矿流体中稀土元 素浓度的贡献很小。

晋磨锑矿床矿体中辉锑矿含量可达金属矿物总 量的 90% 以上,脉石矿物则以石英为主,占矿体中 脉石矿物的 80% 以上,矿体中未见石膏等硫酸盐矿 物,说明矿区早期成矿流体中的阴离子以 S²⁻或 HS⁻ 为主,可知在辉锑矿结晶、沉淀时成矿流体处于酸性 还原环境^[17]。实验表明,辉锑矿在碱性溶液中(pH >9) 溶解度较大,矿床流体包裹体中硫元素含量较 高^[12] 推测成矿流体在运移过程中 Sb 以 SbS³⁻ 或者 HSbS⁴⁻ 等形式运移^[18-20]。矿区中硅化普遍较强,且 从坑道实际勘查中可知,较富的锑矿石和石英紧密 共生,说明伴随着热液的侵入与运移,成矿流体应为 较还原的环境,造成了锑等硫化物的大量沉淀。

华南锑矿带内典型锑矿成因各不相同,其中湖 南锡矿山、贵州独山与晋磨锑矿床有较多类似地质 特征。围岩硅化显著,矿区内无或少量岩浆岩活动, 断裂构造发育较好;金属矿物基本为单一的辉锑矿, 以浸染状、块状、构造角砾状、团块状产出;脉石矿物 以石英为主,少量方解石。类比锡矿山、独山成矿物 质来源,锡矿山成矿物质来源于两种观点:下伏地层 前泥盆系提供了成矿物质;基底地层,甚至幔源物质 和隐伏岩体提供了成矿物质。独山锑矿成矿物质来 自泥盆系围岩^[21],但有观点显示基底地层可能提供 了部分成矿物质。显然本次稀土元素地球化学研究 表明,晋磨锑矿成矿物质与赋矿地层相关性不明显, 798 因此推测晋磨锑矿床锑来源于基底、幔源物质和隐 伏岩体。流体在运移的过程中,来自基底、深部地幔 或者隐伏岩体的易溶矿物组分(Sb、As、Si、S等)萃 取到流体中,逐渐形成了富含矿质的地下水溶液,成 矿流体在热动力驱动下运移,在低压构造带或虚脱 部位充填、卸载,形成锑矿体。

6 结论

(1)稀土元素分析显示晋磨锑矿床围岩稀土含量(229.11×10⁻⁶~395.60×10⁻⁶)远远大于矿石稀土 含量(11.65×10⁻⁶~17.05×10⁻⁶);锑矿石和围岩的 稀土元素配分模式图明显不同,均说明了围岩对成 矿流体中稀土元素浓度的影响很小。

(2) 锑矿石的 δCe 值为 0.29~0.51,明显小于 矿化岩石 δCe 值(0.88~1.02) 和围岩的 δCe 值
(0.95~0.98),所表现出的 Ce 中强度负异常由成矿 流体中亏损 Ce 造成的,与赋矿围岩无明显关系。

(3) 类比华南锑成矿带内锡矿山、独山成矿物 质来源的研究,结合晋磨锑矿床地质特征、稀土元素 地球化学研究,认为成矿物质的来源不是千枚岩、变 质石英杂砂岩等区域浅变质岩系的赋矿地层,可能 来源于基底,甚至有幔源物质、隐伏岩体物质的加入。

总之,越南晋磨锑矿床是一个受构造控制的浅 成低温热液充填型矿床,赋矿围岩为区域浅变质的 变质杂砂岩、千枚岩,成矿物质可能来源于基底,甚 至有幔源物质、隐伏岩体物质的加入。

参考文献

- [1] 季根源,戴塔根,易锦俊,姜爱玲,赵 旸. 越南广宁省晋磨锑 矿床流体包裹体和氢氧同位素地球化学研究[J]. 地质与勘 探,2014,50(6):1173-1180.
- [2] 肖启明,曾笃仁,金富秋,杨明跃,阳志芳.中国锑矿床时空分 布规律及找矿方向[J].地质与勘探,1992,28(12):9-14.
- [3] 彭建堂 胡瑞忠. 华南锑矿带的成矿时代和成矿构造环境[J].地质地球化学 2001 29(3):104-108.
- [4] 李闫华 鄢云飞 谭 俊 李 飞. 稀土元素在矿床学研究中的 应用[J]. 地质找矿论丛 2007 22(4):294-298.
- [5] Taylor S R , Rudnick R L , Melennan S M , et al. Rare earth element patterns in Archean high-grade metasediments and their tectonic significance [J]. Geochimica et Cosmochimica Acta , 1986 , (50): 2267–2279.
- [6] 印建平,戴塔根.湖南锡矿山超大型锑矿床成矿物质来源、形成机理及其找矿意义[J].有色金属矿产与勘查,1999,8(6): 476-481.
- [7] 刘文均. 华南几个锑矿床的成因探讨[J]. 成都地质学院学报,

1992 ,19(2) : 10-19.

- [8] 彭建堂,胡瑞忠,邹利群,刘建雄.湘中锡矿山锑矿床成矿物质 来源的同位素示踪[J].矿物学报,2002,22(2):155-159.
- [9] 沈能平 苏文超 符亚洲 徐春霞 阳杰华 蔡佳丽.贵州独山巴 年锑矿床硫、铅同位素特征及其对成矿物质来源的指示[J]. 矿物学报 2013 33(3):271-277.
- [10] 王津津,胡煜昭,韩润生,贵州晴隆锑矿田微量元素地球化学
 特征及其对成矿流体的指示意义[J].矿物学报,2011,31
 (3):571-577.
- [11] 鲍振襄,何谷先. 湘西沃溪钨锑金矿床地质地球化学特征 [J]. 湖南地质,1991,10(3):207-216.
- [12] 朱俊宾,方维萱,刘家军,胡煜昭.贵州晴隆锑矿稀土元素特 征与成因探讨[J].地质找矿论丛 2010 25(2):118-123.
- [13] 黎 彤.化学元素的地球丰度[J].地球化学,1976(3):167-174.
- [14] Kidder D , Krishnaswamy R , Mapes R H. Elemental mobility in phosphatic shales during concretion growth and implication for

provenance analysis [J]. Chemical Geology 2003 (198): 335-353.

- [15] 庞奖励,孙根年,陈 林. 黑山热液型矿床稀土元素的地球化 学行为[J]. 中国稀土学报,1999,17(2):157-161.
- [16] 肖成东,刘学武.东蒙地区夕卡岩石榴石稀土元素地球化学 及其成因[J].中国地质 2002 29(3):311-316.
- [17] 戚学祥 ,李天福 ,于春林. 藏南沙拉岗锑矿稀土和微量元素地 球化学示踪及成矿物质来源[J]. 现代地质 2008 22(2):162 -172.
- [18] 叶造军. 贵州大厂锑矿流体包裹体与稳定同位素[J]. 地质地 球化学,1996 (5):18-20.
- [19] 蔡华君 涨宝贵 李院生. 滇黔桂三角地区锑矿床流体包裹体 研究[J]. 矿物学报,1997,17(4):427-434.
- [20] 肖启明. 中国锑矿地质及矿床实例: 湖南锡矿山锑矿床 [R]. 北京: 北京矿产地质研究所,1996: 64-89.
- [21] 崔银亮.贵州独山锑矿床成矿物质来源研究[J].有色金属矿 产与勘查,1995,4(4):193-199.

Disscution on REE geochemistry characteristics and genesis of Jinmo antimony deposit, Vietnam

JI Gen-yuan¹, DAI Ta-gen², JI Xiang-yong³, SHANG lei¹, JIANG Ai-ling¹

(1. Cores and Samples Center of Land Resources, Langfang 065201;

2. School of Geosciences and Info-Physics, Central South University, Changsha 410083;

3. Exploration Unit of North China Geological Exploration Bureau, Langfang 065201)

Abstract: Analysis and study on the geochemical characteristics of REE in the wall rocks , mineralized rocks and ores of Jinmo antimony deposit shows that the Σ REE of wall rocks is much more than the others , with moderate negative Eu anomaly , ores are different by obviously negative Ce anomaly. Comparison with their REE distribution patterns illustrate that there are significant differences a-mong them. By analogy between the Xikuangshan antimony deposit and the Dushan antimony deposit , combined with field geological investigation and the study of REE geochemistry , it is considered that the ore-forming materials are likely from basement , mantle derived material and concealed rock mass , and independent of ore-hosting wall rocks. When ore-forming fluids transported , stibuite unloaded in the low structure zone and collapse location as a result of the change of the metallogenic physicochemical environment , then Jinmo antimony deposit was formed.

Key words: REE , geochemistry , Jinmo antimony deposit , Vietnam